miércoles, 15 de septiembre de 2010

HUMEDALES DE BOGOTA

HUMEDAL CORDOBA...




¿QUE ES UN HUMEDAL?


Un humedal es una zona de tierras, generalmente planas, en la que la superficie se inunda permanente o intermitentemente, al cubrirse regularmente de agua, el suelo se satura, quedando desprovisto de oxígeno y dando lugar a un ecosistema híbrido entre los puramente acuáticos y los terrestres.

La categoría biológica de humedal comprende zonas de propiedades geológicas diversas: bañados, ciénagas, esteros, marismas, pantanos, turberas, así como las zonas de costa marítima que presentan abnegación periódica por el régimen de mareas (manglares).

un Humedal es una zona de la superficie terrestre que está temporal ó permanentemente inundada, regulada por factores climáticos y en constante interrelación con los seres vivos que la habitan.
Según el artículo 1 del párrafo 1, se consideran humedales,

"las extensiones de marismas, pantanos y turberas, o superficies cubiertas de aguas, sean éstas de régimen natural o artificial, permanentes o temporales, estancadas o corrientes, dulces, salobres o saladas, incluidas las extensiones de agua marina cuya profundidad en marea baja no exceda de seis metros".
Así mismo, contenido en el artículo 2 del párrafo 1, se estipula que,

"podrán comprender sus zonas ribereñas o costeras adyacentes, así como las islas o extensiones de agua marina de una profundidad superior a los seis metros en marea baja, cuando se encuentren dentro del humedal".
El Día Mundial de los Humedales se celebra cada 2 de febrero desde que en 1971 se llevara a cabo la Convención de Ramsar.



martes, 14 de septiembre de 2010

CUARTO PERIODO...

NOMENCLATURA DE LOS ALCANOS
Un átomo de carbono forma 4 uniones con otros átomos. En esta primer familia de compuestos todas las uniones son uniones simples, o sea involucra solo 2 electrones y están unidos otros átomos de carbono o hidrógenos, para darnos la geometria tetrahedral para cada átomo de carbono en molécula. El nombre del primer compuesto en esta familia se forma usando poniendo el nombre para un átomo (met) y el nombre de la familia (ano) para darnos (CH4) metano.

Otros miembros de esta familia se obtinen al incrementar el número de átomos de carbono

A continuación se muestra la fórmula y los nombres para algunos compuestos:

Nombre de los alcanos usando el sistema de nomenclatura IUPAC.
















En los orígenes de la química, los compuestos orgánicos eran nombrados por sus descubridores. La urea recibe este nombre por haber sido aislada de la orina.
El ácido barbitúrico fue descubierto por el químico alemán Adolf von Baeyer, en 1864. Se especula que le dio este nombre en honor de una amiga llamada bárbara.

La ciencia química fue avanzando y el gran número de compuestos orgánicos descubiertos hicieron imprescindible el uso de una nomenclatura sistemática.
En el sistema IUPAC de nomenclatura un nombre está formado por tres partes: prefijos, principal y sufijos; Los prefijos indican los sustituyentes de la molécula; el sufijo indica el grupo funcional de la molécula; y la parte principal el número de carbonos que posee. Los alcanos se pueden nombrar siguiendo siete etapas:

Regla 1.- Determinar el número de carbonos de la cadena más larga, llamada cadena principal del alcano. Obsérvese en las figuras que no siempre es la cadena horizontal.








El nombre del alcano se termina en el nombre de la cadena principal (octano) y va precedido por los sustituyentes.

Regla 2.- Los sustituyentes se nombran cambiando la terminación –ano del alcano del cual derivan por –ilo (metilo, etilo, propilo, butilo). En el nombre del alcano, los sustituyentes preceden al nombre de la cadena principal y se acompañan de un localizador que indica su posición dentro de la cadena principal. La numeración de la cadena principal se realiza de modo que al sustituyente se le asigne el localizador más bajo posible.







Regla 3.- Si tenemos varios sustituyentes se ordenan alfabéticamente precedidos por lo localizadores. La numeración de la cadena principal se realiza para que los sustituyentes en conjunto tomen los menores localizadores.








Si varios sustituyentes son iguales, se emplean los prefijos di, tri, tetra, penta, hexa, para indicar el número de veces que aparece cada sustituyente en la molécula. Los localizadores se separan por comas y debe haber tantos como sustituyentes.








Los prefijos de cantidad no se tienen en cuenta al ordenar alfabéticamente.

Regla 4.- Si al numerar la cadena principal por ambos extremos, nos encontramos a la misma distancia con los primeros sustituyentes, nos fijamos en los demás sustituyentes y numeramos para que tomen los menores localizadores.








Regla 5.- Si al numerar en ambas direcciones se obtienen los mismos localizadores, se asigna el localizador más bajo al sustituyente que va primero en el orden alfabético.

Regla 6.- Si dos a más cadenas tienen igual longitud, se toma como principal la que tiene mayor número de sustituyentes.










Regla 7.- Existen algunos sustituyentes con nombres comunes aceptados por la IUPAC, aunque se recomienda el uso de la nomenclatura sistemática.








Los nombres sistemáticos de estos sustituyentes se obtienen numerando la cadena comenzando por el carbono que se une a la principal. El nombre del sustituyente se forma con el nombre de la cadena más larga terminada en –ilo, anteponiendo los nombres de los sustituyentes que tenga dicha cadena secundaria ordenados alfabéticamente. Veamos un ejemplo:

NOMENCLATURA DE LOS ALQUENOS


Los alquenos u olefinas son hidrocarburos insaturados que tienen uno o varios dobles enlaces carbono-carbono en su molécula. Se puede decir que un alqueno no es más que un alcano que ha perdido dos átomos de hidrógeno produciendo como resultado un enlace doble entre dos carbonos. Los alquenos cíclicos reciben el nombre de cicloalquenos.

NOMENCLATURA SISTEMATICA


1. Nombrar al hidrocarburo principal: Se ha de encontrar la cadena carbonada más larga que contenga el enlace doble, no necesariamente la de mayor tamaño, colocando los localizadores que tengan el menor número en los enlaces dobles, numerando los átomos de carbono en la cadena comenzando en el extremo más cercano al enlace doble. NOTA: Si al enumerar de izquierda a derecha como de derecha a izquierda, los localizadores de las insaturaciones son iguales, se busca que los dobles enlaces tenga menor posición o localizador más bajo.

2. Si la cadena principal tiene sustituyentes iguales en el mismo átomo de carbono separando por comas los números localizadores que se repiten en el átomo, estos se separan por un guión de los prefijos: Di, Tri, Tetra, etc. Respectivamente al número de veces que se repita el sustituyente.

3. Los sustituyentes se escriben de acuerdo al orden alfabético con su respectivo localizador.

4. Si en la cadena principal existen varios sustituyentes ramificados iguales se coloca el número localizador en la cadena principal separando por un guión, y se escribe el prefijo correspondiente al número de veces que se repita con los prefijos: Bis, Tris, Tetraquis, Pentaquis, etc. Seguido de un paréntesis dentro de cual se nombra al sustituyente complejo con la terminación -IL

5. Realizado todo lo anterior con relación a los sustituyentes, se coloca el número de localizador del doble enlace en la cadena principal separada de un guión, seguido del nombre de acuerdo al número de átomos de carbono reemplazando la terminación -ano por el sufijo -eno.

6. Si se presentan más de un enlace doble, se nombra indicando la posición de cada uno de los dobles enlaces con su respectivo número localizador, se escribe la raíz del nombre del alqueno del cual proviene, seguido de un prefijo de cantidad: di, tri, tetra, etc. y utilizando el sufijo -eno. Ej:-dieno, -trieno y así sucesivamente.

ENERGIA DEL ENLACE


Energéticamente, el doble enlace se forma mediante la edición de dos tipos de enlace, el σ y el π. La energía de dichos enlaces se obtiene a partir del cálculo del solapamiento de los dos orbitales constituyentes, y en este caso el solapamiento de los orbitales sp2 es mucho mayor que los orbitales p (el primero crea el enlace σ y el segundo el π) y por tanto la componente σ es bastante más energética que la π. La razón de ello es que la densidad de los electrones en el enlace π están más alejados del núcleo del átomo. Sin embargo, a pesar de que el enlace π es más débil que el σ, la combinación de ambos hace que un doble enlace sea más fuerte que un enlace simple.

El que el doble enlace sea rígido (en contraposición al enlace simple, formado por un solo enlace σ, que puede rotar libremente a lo largo de su eje) se debe a la presencia de los orbitales π, así, para que exista una rotación, es necesario romper los enlaces π y volver a formarlos. La energía necesaria para romper estos enlaces no es demasiado elevada, del orden de los 65 kcal·mol-1, lo cual corresponde a temperaturas de entre 400 y 500 °C. Esto significa que por debajo de estas temperaturas los dobles enlaces permanecen rígidos y, por lo tanto, la molécula es configuracionalmente estable, pero por encima el enlace π puede romperse y volverse a formar y aparece una rotación libre.